Игровой портал - Skypia

Некоторые идеи написания искуственного интелекта для шахмат. Искусственный интеллект обыграл человека в игры (Го, Шахматы и другие) Краткая аннотация проекта

Разработанной инженерами Массачусетского технологического института. Фишер трижды поставил мат компьютеру и одержал безоговорочную победу. В своих письмах шахматист писал, что программы допускают «грубые ошибки», а сами компьютеры называл «бесполезными кусками железа».

Но в том же году Монти Ньюборн, один из первых ученых, изучавших компьютерные шахматы, сказал пророческие слова:

«Раньше гроссмейстеры приходили на турниры по компьютерным шахматам, чтобы посмеяться. Сейчас они приходят наблюдать, а в дальнейшем будут там учиться».

Бобби Фишер после победы над компьютером. Фото: Getty Images

Похоже, что люди питают какую-то врожденную любовь к интеллектуальным играм. Когда в 1649 году короля Англии Карла I приговорили к смерти, он взял с собой на казнь две вещи - библию и набор шахмат. Известный художник XX века Марсель Дюшан на пике своей карьеры внезапно уехал в Аргентину и начал заниматься вырезанием шахматных фигур из дерева, да и в целом увлекся шахматами. В XIX веке в Японии произошла загадочная история, связанная с игрой го. По легенде духи подсказали одному знаменитому игроку три блестящих хода. В результате он смог победить, а его противник после партии упал на пол, захлебнулся кровью и умер.

Компьютеры далеки от всей этой мистики, но всего за пару десятков лет они изучили интеллектуальные игры глубже, чем человечество за тысячелетия. В 2014 году компания приобрела фирму DeepMind за $400 миллионов для «проведения самого необычного и сложного исследования, конечной целью которого является разгадка сущности интеллекта». В частности ученые хотели научить компьютер играть в го. Эта игра значительно сложнее шахмат. В 1985 году один тайваньский промышленный магнат сказал, что заплатит $1,4 миллиона за программу, которая сможет победить лучшего игрока в го. В 1997 году магнат умер, а спустя три года у его предложения истек срок действия - никто так и не смог забрать приз.

Сейчас он мог бы принадлежать программе DeepMind AlphaGo, которая использует современные нейросети. Год назад она международного чемпиона по го Ли Седоля. В мае этого года она вновь победу над лучшим игроком в го, а также над командой из пяти других профессиональных игроков.

AlphaGo стала абсолютным чемпионом. Вот только вскоре после своих громких побед ее ждет забвение. В конце мая DeepMind незаметно сообщила , что AlphaGo уходит с соревновательной сцены. Чтобы отметить это событие, компания опубликовала 50 вариантов партий, которые программа играла против самой себя. В дальнейшем DeepMind хочет выпустить итоговую исследовательскую работу, в которой будет описана эффективность алгоритма программы.

Что касается шахмат, то человечество потеряло пальму первенства в них еще за 20 лет до этих событий, когда шахматист Гарри Каспаров проиграл суперкомпьютеру IBM Deep Blue. Шахматы и го - не единственные игры, которым пытаются обучить ИИ. Компьютер пробовали научить шашкам , коротким нардам , реверси , покеру и многим другим настольным играм. И человеческий интеллект уже не может сравниться в них с искусственным. Отчасти это произошло из-за развития технологий. Например, еще в 1997 году компьютер Deep Blue занимал 259-е место в списке самых быстрых суперкомпьютеров в мире и мог выполнять около 11 миллиардов операций в секунду. Сейчас же благодаря современным алгоритмам даже ваш смартфон способен победить Каспарова.

Гарри Каспаров против компьютера Deep Blue. Слева один из инженеров IBM Сюн Фэйсюн. Фото: Getty Images

Такие достижения ИИ вызвали у людей вполне человеческие эмоции: печаль, угнетенность и отчаяние. После того как Ли Седоль потерпел поражение от AlphaGo, он пережил экзистенциальный кризис. «Я усомнился в человеческой изобретательности, - признался он после матча. - Я засомневался, являются ли все ходы в го, которые я знаю, правильными». По словам одного из очевидцев, после поражения Ли выглядел так, будто бы ему было «физически плохо». Каспаров чувствовал себя после проигрыша компьютеру не лучше. Когда он вернулся в отель, он просто разделся, лег в постель и смотрел в потолок.

«Компьютер настолько глубоко анализирует некоторые позиции, что играет, как бог», - сказал Каспаров.

Deep Blue впервые показал общественности, что компьютер способен превзойти человека в решении интеллектуальных задач. «Тогда это вызвало шок, - сказал Мюррей Кемпбелл, один из создателей Deep Blue. - Сейчас же мы постепенно привыкаем к этой мысли». Тем не менее, непонятно что ждет человечество в будущем. Как можно использовать в реальном мире достижения в играх? Ответ Кемпбелла на этот вопрос звучит пессимистично. «Трудно найти хороший пример применения таких успехов в настольных играх, - сказал он. - В начале 90-х один из сотрудников IBM по имени Геральд Тезауро пытался обучить ИИ игре в нарды и сделал некоторые достижения в стимулированном обучении. Сейчас его методы часто используются в робототехнике. Однако его случай - скорее исключение из правил».

Фото из открытых источников

Новый искусственный интеллект всего за 4 часа обучения стал лучшим шахматистом на Земле! (сайт)

А помните, какой фурор наделал в 1996 году шахматный суперкомпьютер «Deep Blue», выиграв первую партию у российского чемпиона Гарри Каспарова? Несмотря на то, что наш соотечественник все же одержал победу в этой игре, уже тогда стало понятно, что искусственный интеллект стремительно прогрессирует и когда-нибудь обаятельно станет наилучшим шахматистом, после чего людям будет бесполезно играть с программой. Оставался лишь вопрос, когда это произойдет.

Представители известной корпорации «Google» заявили, что это время, наконец-то, настало. По словам специалистов, разработанная ими нейросеть «AlphaZero» всего за 4 часа самообучения превратилась в самого виртуозного и безупречного шахматного игрока за всю историю этой игры. Сверхмощный искусственный интеллект обучался игре в шахматы, зная только ее правила. Поиграв 4 часа с самим собой, робот научился идеально играть, без труда победив шахматную программу «Stockfish», считавшуюся до этого самой совершенной. Компьютеры провели 100 партий - «AlphaZero» удалось выиграть 28 из них и свести вничью оставшиеся 72. Передовая нейросеть, имитирующая работу человеческого мозга, способна рисковать и даже использовать своеобразное подобие интуиции.

Мечтать о победе над искусственным интеллектом уже не приходится

Более ранние модели «AlphaZero» обучались игре, следя за живыми шахматистами. Разработчики предполагали, что это поможет искусственному интеллекту лучше понять стратегии игры. На самом же деле оказалось, что наблюдение за людьми только замедляет развитие программы. Когда нейросеть предоставили самой себе, ее способности взлетели до небес. Теперь инженеры «Google» думают над тем, как применить подобные технологии для реальной пользы человечеству, поскольку шахматная игра, даже самая виртуозная, не имеет прикладной цели.

В 1968 году известный Дэйвид Леви заключил пари, что в течение ближайшего десятилетия его не обыграет ни одна программа. Все это время гроссмейстер постоянно состязался с различные шахматными компьютерами и всякий раз выигрывал у них. В 1978 году он одержал победу над сильнейшей в то время программой «Chess 4.7», выиграв пари. К несчастью, в наши дни столь интересных поединков уже не будет - нам предстоит теперь узнавать только о том, как одна фантастическая нейросеть победила другую. Живые шахматисты о победе над такими монстрами не могут уже даже мечтать. И это только начало подобных побед ИИ над человеком…

1997 год, Нью-Йорк. Чемпион мира по шахматам Гарри Каспаров проигрывает компьютеру «Deep Blue» фирмы IBM, и это сражение становится величайшей шахматной партией всех времен и народов. Об этой игре будут говорить как о «последней битве человеческого разума», многие будут сравнивать ее с первым полетом братьев Райт и высадкой астронавтов на Луну.

20 июля — в международный день шахмат — расскажем вам о том, что было дальше. А также о том, в чем искусственный интеллект уступает человеческому, и причем здесь Алан Тьюринг. Слово Гарри Каспарову, чемпиону мира по шахматам и автору книги .

Парадоксально, но во время сеанса одновременной игры с лучшими профессиональными шахматистами роботу труднее всего было бы перемещаться между столами и переставлять шахматные фигуры, а не рассчитывать ходы. Хотя научные фантасты вот уже несколько веков придумывают автоматы, которые выглядят и движутся как люди, и роботы сегодня успешно занимаются физическим трудом, надо признать, что наши машины гораздо лучше воспроизводят человеческое мышление, чем человеческие движения.

В шахматах, как и во многих других сферах деятельности, машины сильны в том, в чем слабы люди, и наоборот.

Этот известный принцип в области искусственного интеллекта и робототехники сформулировал в году Ханс Моравек, который отметил, что «относительно просто добиться того, чтобы компьютеры выполняли тест умственного развития или играли в шашки на уровне взрослого человека, однако сложно или невозможно привить им навыки годовалого ребенка в том, что касается восприятия или мобильности».

В ту пору я не был в курсе этих теорий; к тому же Моравек говорил о шашках, а не о шахматах, но десять лет спустя стало очевидно, что этот принцип распространяется в том числе и на мою сферу деятельности. Гроссмейстеры отлично справлялись с оценкой позиции и стратегическим планированием — слабыми местами шахматных компьютеров, зато те могли за секунды просчитать тактические последствия, на что даже лучшим человеческим умам потребовались бы многие дни.

Это подало мне идею. После того как мои матчи с Deep Blue привлекли столь пристальное внимание, я хотел продолжать шахматные эксперименты, несмотря на то, что IBM от них отказалась.

Мой план, попросту говоря, был таков: если вы не можете их победить, то присоединитесь к ним.

Я подумал: что если человек и машина будут не противниками, а партнерами? Замысел воплотился в году в испанском Леоне, где состоялся первый матч по продвинутым шахматам (advanced chess). Оба партнера имели под рукой персональный компьютер и могли использовать во время партии любую программу по своему выбору. Цель заключалась в том, чтобы выйти на новый, высочайший уровень игры — благодаря синтезу самых сильных сторон человеческого и машинного интеллекта. Хотя, как мы увидим далее, не все прошло так, как задумывалось, поразительные результаты этих «битв кентавров» убедили меня в том, что шахматы по-прежнему могут предложить очень многое в такой области, как взаимодействие человеческого разума и искусственного интеллекта.

К этому убеждению я пришел далеко не первым. Шахматные машины были святым Граалем задолго до того, как люди научились их создавать. И вот наука наконец получила доступ к этой чаше — а я оказался тем человеком, который держит ее в руках. Передо мной стоял выбор: отклонить вызов или принять его. Как я мог устоять? Это был шанс еще больше поднять популярность шахмат и расширить аудиторию, завоеванную ими после знаменитого матча между Бобби Фишером и Борисом Спасским во времена холодной войны и после моих поединков за мировую корону с Анатолием Карповым. Это позволило бы привлечь в мир шахмат армию щедрых спонсоров, особенно из числа высокотехнологичных компаний. Так, корпорация Intel в середине 1990-х годов спонсировала целую серию турниров по быстрым и классическим шахматам и полный цикл чемпионата мира, включая мой титульный матч с Вишванатаном Анандом, проходивший на верхнем этаже Всемирного торгового центра. К тому же мной управляло непреодолимое любопытство. Неужели машины действительно могут научиться играть в шахматы так же хорошо, как чемпион мира? Неужели они и вправду способны мыслить?

Интересно, что
первая шахматная программа появилась раньше, чем первый компьютер.

Ее разработал гениальный британский математик Алан Тьюринг, взломавший код нацистской шифровальной машины «Энигма». В 1952 году он написал на бумаге алгоритм, с помощью которого машина могла бы играть в шахматы, — только в роли центрального процессора выступал сам математик. «Бумажная машина Тьюринга» оказалась вполне компетентным игроком. Причина ее конструирования выходила за рамки личного интереса Тьюринга к шахматам. Умение играть в шахматы издавна считалось частью человеческого интеллекта, и создание устройства, способного победить человека в этой игре, должно было знаменовать появление действительно умной машины.

Имя Алана Тьюринга также навсегда связано с названием предложенного им мысленного эксперимента, позднее проведенного в реальности и получившего название «тест Тьюринга». Суть его в том, чтобы определить, сможет ли компьютер обмануть человека таким образом, чтобы тот думал, что имеет дело с человеком, и если сможет — тест считается пройденным. Еще до моего первого матча с Deep Blue компьютеры начали проходить то, что можно назвать «шахматным тестом Тьюринга». Они по-прежнему играли довольно плохо и часто делали явно нечеловеческие ходы, но иногда им уже удавалось разыгрывать партии, которые выглядели бы вполне уместно и в приличном человеческом турнире. С каждым годом машины становились все сильнее и сильнее, но в процессе их эволюции мы узнавали больше о самих шахматах, чем об искусственном интеллекте (ИИ).

Нельзя утверждать, что кульминация 45-летних поисков, ставшая событием всемирного масштаба, обернулась разочарованием, но она со всей очевидностью показала, что сконструировать шахматный суперкомпьютер — вовсе не то же самое, что создать искусственный интеллект, способный сравниться с человеческим разумом, о чем мечтали Тьюринг и другие.

По сути, «ум» Deep Blue ничем не отличался от «ума» программируемого будильника.

Мысль об этом только усугубляла для меня горечь поражения — проиграть программируемому будильнику, пусть даже стоимостью $10 млн?!

Так называемое ИИ-сообщество, безусловно, радовалось результату и привлеченному вниманию, но в то же время ученые были явно обескуражены тем фактом, что Deep Blue ничуть не напоминает искусственный интеллект, о котором мечтали их предшественники. Вместо того чтобы играть в шахматы как человек — демонстрируя человеческую интуицию и нестандартное творческое мышление, он играет в шахматы как машина: оценивает до 200 млн возможных ходов в секунду и побеждает благодаря грубой вычислительной силе. Разумеется, это нисколько не умаляет самого достижения. В конце концов, Deep Blue — творение человеческого разума, и проигрыш человека созданной им машине одновременно означает его победу.

После невероятного напряжения того матча, которое усугублялось подозрительным поведением IBM и моей склонностью к сомнениям, я не был готов легко признать свое поражение. Честно говоря, я никогда не умел проигрывать. Полагаю, что человек, который легко смиряется с поражением, никогда не станет настоящим чемпионом, и этот принцип, конечно, справедлив и в моем случае. Но я верю в честную борьбу. Тогда же я считал, что IBM обманула меня — а также весь мир, пристально следивший за нашим матчем.

Должен признать, что повторный анализ каждого аспекта того бесславного поединка с Deep Blue оказался нелегким делом.

В течение лет я намеренно избегал любых разговоров на эту тему, касаясь лишь того, что уже было известно широкой публике.

Публикаций, посвященных Deep Blue, великое множество, но данная книга — первая и единственная, где собраны все факты и вся история рассказывается так, как ее вижу я. Несмотря на болезненность воспоминаний, это был поучительный и благотворный опыт. Мой великий учитель Михаил Ботвинник, шестой чемпион мира по шахматам, учил меня искать истину в каждой позиции. И я попытался выполнить его завет и поискать истину в самой сути Deep Blue.

Иллюстрация: Shutterstock

Рассмотрим некоторые базовые концепции, которые помогут нам создать простой искусственный интеллект, умеющий играть в шахматы:

  • перемещение;
  • оценка шахматной доски;
  • минимакс;
  • альфа-бета-отсечение.

На каждом шаге мы будем улучшать наш алгоритм с помощью одного из этих проверенных временем методов шахматного программирования. Вы увидите, как каждый из них влияет на стиль игры алгоритма.

Готовый алгоритм можно найти на GitHub .

Шаг 1. Генерация ходов и визуализация шахматной доски

Мы будем использовать библиотеки chess.js для генерации ходов и chessboard.js для визуализации доски. Библиотека для генерации ходов реализует все правила шахмат. Исходя из этого, мы можем рассчитать все ходы для данного состояния доски.

Визуализация функции генерации движения. Исходное положение используется как вход, а на выходе - все возможные ходы из этой позиции.

Использование этих библиотек поможет нам сосредоточиться только на самой интересной задаче - создании алгоритма, который находит лучший ход. Мы начнем с написания функции, которая возвращает случайный ход из всех возможных ходов:

Var calculateBestMove = function(game) { //Генерация всех ходов для данной позиции var newGameMoves = game.ugly_moves(); return newGameMoves; };

Хотя этот алгоритм не очень солидный шахматист, но это хорошая отправная точка, поскольку его уровня достаточно, чтобы сыграть с нами:

Черные играют случайными ходами

JSFiddle .

Шаг 2. Оценка доски

Теперь попробуем понять, какая из сторон сильнее в определенном положении. Самый простой способ добиться этого - посчитать относительную силу фигур на доске, используя следующую таблицу:

С помощью функции оценки мы можем создать алгоритм, который выбирает ход с наивысшей оценкой:

Var calculateBestMove = function (game) { var newGameMoves = game.ugly_moves(); var bestMove = null; //Используйте любое отрицательное число var bestValue = -9999; for (var i = 0; i < newGameMoves.length; i++) { var newGameMove = newGameMoves[i]; game.ugly_move(newGameMove); //Возьмите отрицательное число, поскольку ИИ играет черными var boardValue = -evaluateBoard(game.board()) game.undo(); if (boardValue > bestValue) { bestValue = boardValue; bestMove = newGameMove } } return bestMove; };

Единственным ощутимым улучшением является то, что теперь наш алгоритм съест фигуру, если это возможно:

Черные играют с помощью простой функции оценки

Посмотреть, что получилось на данном этапе, вы можете на JSFiddle .

Шаг 3. Дерево поиска и минимакс

Затем мы создадим дерево поиска, из которого алгоритм может выбрать лучший ход. Это делается с помощью алгоритма «минимакс».

Прим. перев. В одной из наших статей мы уже имели дело с - учились создавать ИИ, который невозможно обыграть в крестики-нолики.

В этом алгоритме рекурсивное дерево всех возможных ходов исследуется до заданной глубины, а позиция оценивается на «листьях» дерева.

После этого мы возвращаем либо наименьшее, либо наибольшее значение потомка в родительский узел, в зависимости от того, чей просчитывается ход (то есть мы стараемся минимизировать или максимизировать результат на каждом уровне).

Визуализация минимакса в искусственном положении. Лучший ход для белых - b2-c3, так мы можем гарантировать, что доберемся до позиции, где оценка равна -50

Var minimax = function (depth, game, isMaximisingPlayer) { if (depth === 0) { return -evaluateBoard(game.board()); } var newGameMoves = game.ugly_moves(); if (isMaximisingPlayer) { var bestMove = -9999; for (var i = 0; i < newGameMoves.length; i++) { game.ugly_move(newGameMoves[i]); bestMove = Math.max(bestMove, minimax(depth - 1, game, !isMaximisingPlayer)); game.undo(); } return bestMove; } else { var bestMove = 9999; for (var i = 0; i < newGameMoves.length; i++) { game.ugly_move(newGameMoves[i]); bestMove = Math.min(bestMove, minimax(depth - 1, game, !isMaximisingPlayer)); game.undo(); } return bestMove; } };

С минимаксом наш алгоритм начинает понимать основную тактику шахмат:

Минимакс с уровнем глубины 2

Посмотреть, что получилось на данном этапе, вы можете на JSFiddle .

Эффективность минимакса в значительной степени зависит от достижимой глубины поиска. Именно это мы улучшим на следующем шаге.

Шаг 4. Альфа-бета-отсечение

Позиции, которые нам не нужны, если используется альфа-бета-отсечение. Дерево посещается в описанном порядке.

С альфа-бета-отсечением мы получаем значительное улучшение минимакса, как показано в следующем примере:

Количество позиций, которые нужно оценить в случае поиска с глубиной 4 и начальной позицией, изображённой на картинке.

Посмотреть, что получилось на данном этапе, вы можете на JSFiddle .

Шаг 5. Улучшенная функция оценки

Первоначальная функция оценки довольно наивна, поскольку мы просто подсчитываем очки фигур, которые находятся на доске. Чтобы улучшить её, мы начнём учитывать положение фигур. Например, конь в центре доски «дороже», потому что он имеет больше доступных ходов и, следовательно, более активен, чем конь на краю доски.

культуры. Диссер. Канд. Пед наук. Ростов-на-Дону. 2003.

2.Азарова Е.А. Деструктивные формы семейного воспитания, актуальные проблемы современности, преступления последних времен: духовно-нравственный и криминофамилистический аспекты. - Ростов-на-Дону: Изд-во РГПУ, 2005.

3.Габдрева ГШ. Основные аспекты проблемы тревожности в психологии // Школьный психолог. - 2004. - N° 8. - С. 9.

4.Ениколопов С.Н. Проблемы семейного насилия // Проблемы психологии. -2002. -№5-6.

5.Целуйко В.М. Психология неблагополучной семьи: Книга для педагогов и родителей. - М.: Изд-во ВЛАДОС-ПРЕСС, 2003.

6.Шапарь В.Б. Практическая психология. Психодиагностика отношений между родителями и детьми. -Ростов н/Д: Феникс, 2006.

© Азарова Е.А., Жулина Г.Н., 2016

А.И. Алифиров

канд. пед. наук, доцент РГСУ, г. Москва, РФ

И.В. Михайлова канд. пед. наук, доцент РГСУ, г. Москва, РФ

«ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ» В ШАХМАТАХ

Аннотация

В статье рассматривается генезис использования программных и аппаратных средств, способных осуществлять интеллектуальную деятельность, сопоставимую с интеллектуальной деятельностью человека.

Ключевые слова

Компьютерные технологии в шахматах, шахматные программы, шахматы.

Сегодня под термином "искусственный интеллект" (ИИ) понимается теория создания программных и аппаратных средств, способных осуществлять интеллектуальную деятельность, сопоставимую с интеллектуальной деятельностью человека. При решении практических задач чаще всего пользуются заданием из списка, считая при этом, что если компьютерная система в состоянии решить эти задачи, то она и является системой ИИ. Часто в этот список включают игру в шахматы, доказательство теорем, решение диагностических задач по исходному неполному набору данных, понимание естественного языка, способность к обучению и самообучению, способность к классификации объектов, а также способность вырабатывать новые знания на основе порождения новых правил и моделей регуляризации знаний .

Одной из важнейших проблем новой науки - кибернетики стала проблема, как улучшить управление, как усовершенствовать принятие решений. Один из основателей кибернетики К. Шеннон (Shannon C.) предложил формализовать и программировать шахматы для того, чтобы использовать шахматный компьютер как модель, для решения аналогичных задач управления . Авторитет К. Шеннона был столь велик, что его идеи незамедлительно положили начало новому научному направлению. Идеи К. Шеннона были использованы в работах А. Тьюринга, К. Цузе, Д. Принца.

Автор теории информации. К. Шеннон, писал: "Шахматная машина идеальна, чтобы с нее начать, поскольку (1) задача четко определяется допустимыми операциями (ходы) и конечной целью (мат); (2) она не слишком проста, чтобы быть тривиальной, и не слишком сложна для получения удовлетворительного решения; (3) считают, что шахматы требуют «мышления» для искусной игры, решение этой задачи приведет нас либо к тому, что мы будем восхищаться способностями механизированного мышления, либо к ограничению нашей концепции «мышления»; (4) дискретная структура шахмат хорошо укладывается в цифровую природу современных компьютеров".

В дальнейшем шахматы стали предметом состязания естественного и искусственного интеллекта, и был сыгран ряд матчей ведущих шахматистов мира против компьютеров . В 1995 году в интервью популярному журналу Wired Г.К. Каспаров изложил свой взгляд на шахматную игру: "Шахматы - это не математика. Это фантазия и воображение, это человеческая логика, а не игра с предсказуемым результатом. Я не думаю, что теоретически игру в шахматы можно уместить в набор формул или алгоритмов". Через два года суперкомпьютер DEEP BLUE, победив 13-го чемпиона мира Г.К. Каспарова в матче-реванше из шести партий, сняла с повестки дня вопрос о возможностях шахматного искусственного интеллекта. DEEP BLUE хранила в памяти полную базу данных по всем партиям и анализировала исключительно стратегию расчетом . После матча Г.К. Каспаров изменил свою точку зрения, признав, что: "Шахматы - это единственное поле, на котором можно сопоставить человеческую интуицию и творческие способности с силой и машины". Матч изменил ход развития как классических, так и компьютерных шахмат. В системе тренировки стала широко использоваться помощь искусственного интеллекта. Д.И. Бронштейн в своей книге "Давид против Голиафа" (2003 г.) писал: "Ботвинник считал, что шахматы - это искусство анализа, а время одиночек-импровизаторов вроде Андерсена, Морфи, Цукерторта ушло навсегда. Глядя на современные шахматы, надо признать, что Ботвинник оказался прав. "Компьютерные мальчики" довели его идею о необходимости домашнего анализа до абсурда. Они даже не скрывают, что шлифуют дебютные варианты до ясного результата. На турнире в Линаресе (2000 г.) венгр Леко без тени смущения признал, что вся партия с Анандом стояла у него на компьютере!".

Список использованной литературы:

1. Алифиров А.И. Профориентационная работа в средних общеобразовательных школах средствами шахмат / Алифиров А.И. // Проблемы развития науки и образования: теория и практика. Сборник научных трудов по материалам Международной научно-практической конференции 31 августа 2015 г.: в 3 частях. Часть II. М.: "АР-Консалт", 2015 г. - С. 13-14.

2. Михайлова И.В., Алифиров А.И. Тактические действия шахматистов / Михайлова И.В., Алифиров А.И. // Результаты научных исследований Сборник статей Международной научно-практической конференции. Ответственный редактор: Сукиасян Асатур Альбертович (15 февраля 2016 г.) в 4 ч. Ч/3 - Уфа: АЭТЕРНА. -2016.С. 119-121.

3. Михайлова И.В., Алифиров А.И. Теоретико-методологические основы метода мышления схемами шахматистов / Михайлова И.В., Алифиров А.И. // Результаты научных исследований Сборник статей Международной научно-практической конференции. Ответственный редактор: Сукиасян Асатур Альбертович (15 февраля 2016 г.) в 4 ч. Ч/3 - Уфа: АЭТЕРНА. - 2016. С. 123-125.

4. Михайлова И.В. Подготовка юных высококвалифицированных шахматистов с помощью компьютерных шахматных программ и "интернет" : автореф. дис. ... канд. пед. наук: 13.00.04 / Михайлова Ирина Витальевна; РГУФК. - М., 2005. - 24 с.

© Алифиров А.И., Михайлова И.В., 2016

УДК 378.046.2

А.И. Алифиров

К.п.н., доцент РГСУ, г. Москва, РФ В.В. Федчук, к.п.н.

ООО «Благополучие», старший инструктор методист, г. Москва, РФ ИССЛЕДОВАНИЕ УРОВНЯ ФИЗИЧЕСКОГО ЗДОРОВЬЯ ПОДРОСТКОВ

Аннотация

В статье рассматривается проблема физического здоровья подростков и влияние различных факторов

Вам также будет интересно:

Гайды по классам World of Warcraft (WoW): Воин - Воин - Гайды по классам WoW - Каталог статей - Все для WarcraftIII и WoW
Воины - класс, сосредоточенный на оружии ближнего боя. Они сильные и выносливые, а так же...
История создания колоды игральных карт
Костюмированный бал, состоявшийся во время Масленицы 1903 года в Зимнем дворце, был...
Уничтожьте два контрабандных груза одновременно
Assassin’s Creed: Syndicate игра в жанре action-adventure разработана студией...
Развивающие подвижные игры Игра в которой водящий должен
Дети играют на даче. Подмосковье, 1965 год РИА «Новости» «Светофор» На площадке на...
Самые крупные клады, найденные в последнее время
Сказка о красивой жизни уже много сот лет волнует умы. Для этих людей она стала...